

Luca Cardelli, University of Oxford CMSB 2020-09-25

Search "Kaemika" in the app stores http://lucacardelli.name/kaemika.html

An integrated language for chemical models & experimental protocols

Deterministic (ODE) and stochastic (LNA) simulation

Chemical reaction networks (CRNs) and liquid-handling protocols

Reaction scores

Functional scripting

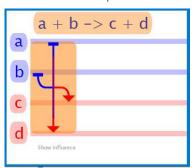
GUI

Chemical sublanguage and Simulation

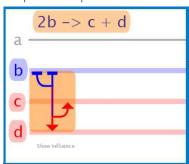
CRN Models

4

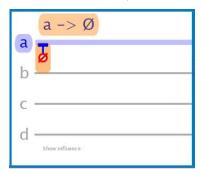
CRN Models

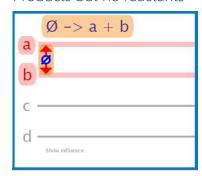


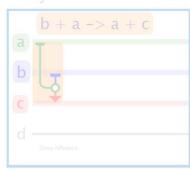
Reaction scores (graphical representation of reaction networks)


Horizonal lines: species. Vertical stripes: reactions.

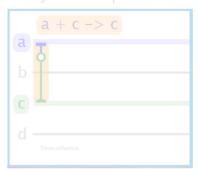
Blue: reagents. Red: products. Green: catalysts.


Reactants and products


Repeated species


Reactants but no products

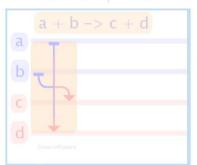
Products but no reactants


Catalyst

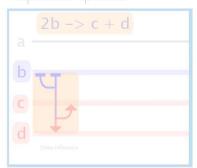
Catalyst but no reactants

Catalyst but no products

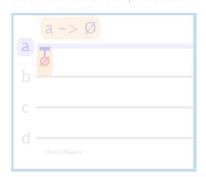
Autocatalyst

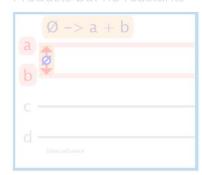

a -> 2a	
b	

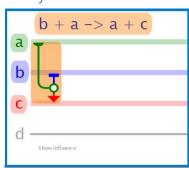
Reaction scores (graphical representation of reaction networks)

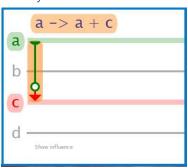

Horizonal lines: species. Vertical stripes: reactions.

Blue: reagents. Red: products. Green: catalysts.

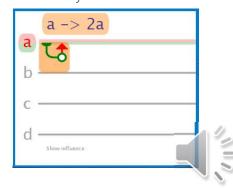

Reactants and products


Repeated species

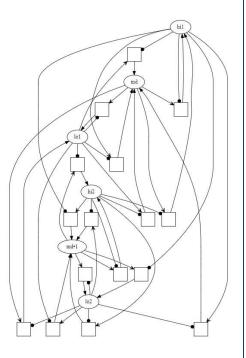

Reactants but no products


Products but no reactants

Catalyst


Catalyst but no reactants

Catalyst but no products


Autocatalyst

A larger reaction score

```
/ A limit cycle oscillator bu
       // 2 Approximate Majority swi
       // A triplet of species lo<->
       // activated from lo to hi by
       // and inhibited from hi to 1
       network Triplet(species lo hi
          species md @ 0M
          act >> lo -> md
                                                                                                                                                                                   lol u
          act >> md -> hi
                               {rate}
                                                                                                                                                                                   hil µ
         inh >> hi -> md
                              {rate}
                                          hi2 = 0 M
          inh >> md -> lo
                              {rate}
                                                                                                                                                                                   lo2 µ
                                          102 = 5 M
                                                                                                                                                                                   hi2 µ
                                          hi1 = 5 M
                                          md = 0 M
                                                                                                                                                                                  lol ±σ
         Approximate Majority bistal
                                          md • 1 = 0 M
                                                                                                                                                                                  hil ±σ
       // hi activates hi and inhibi
       // lo activates lo and inhibi-
                                                                                                                                                                                  lo2 ±σ
                                          hi1 + lo1 -> hi1 + md
                                                                                                                                                                                  hi2 ±σ
                                          hi1 + md -> hi1 + hi1
       network AM(species lo hi, numl
                                                                                                                                                                                             lo1 + hi1 -> lo1 + md
         Triplet(lo, hi, hi, lo, ra
                                         lo1 + md -> lo1 + lo1
hi2 + lo1 -> hi2 + md {0.5}
                                          hi2 + md -> hi2 + hi1 {0.5}
       // Again, a triplet of specie:
                                          lo2 + hi1 -> lo2 + md {0.5}
       // activated independently by
                                          lo2 + md -> lo2 + lo1 {0.5}
hi2 + lo2 -> hi2 + md•1
       // and inhibited independently
                                          hi2 + lo2 -> hi2 + md•1
hi2 + md•1 -> hi2 + hi2
       network Triplet2(species lo h:
                                          lo2 + hi2 -> lo2 + md•1
lo2 + md•1 -> lo2 + lo2
          species md @ OM
          act1 >> lo -> md
                                          lo1 + lo2 -> lo1 + md •1 {0.5}
          act1 >> md -> hi
                                          lo1 + md •1 -> lo1 + hi2 {0.5}
          inh1 >> hi -> md
                                [rate1
                                          hi1 + hi2 -> hi1 + md • 1 {0.5}
          inh1 >> md -> lo
                                {rate1
                                          hi1 + md•1 -> hi1 + lo2 {0.5}
          act2 >> lo -> md
                                {rate2
          act2 >> md -> hi
                                {rate2
                                          ∂ lo1 = - hi1 * lo1 - 0.5 * hi2 * lo1 + lo1 * md + 0.5 * lo2 * md
          inh2 >> hi -> md
                                {rate2
                                         ∂ hi2 = -0.5 * hi1 * hi2 - hi2 * lo2 + hi2 * md•1 + 0.5 * lo1 * md•1

∂ lo2 = 0.5 * hi1 * md•1 - hi2 * lo2 - 0.5 * lo1 * lo2 + lo2 * md•1
          inh2 >> md -> lo
                                           ð hi1 = - hi1 * lo1 - 0.5 * hi1 * lo2 + hi1 * md + 0.5 * hi2 * md
                                           \partial md = 2 * hi1 * lo1 + 0.5 * hi1 * lo2 + 0.5 * hi2 * lo1 - hi1 * md - 0.5 * hi2 * md - lo1 * md - 0.5 * lo2 * md
                                                                                                                                                                                             (
         Approximate Majority bistal
                                          ð md•1 = 0.5 * hi1 * hi2 - 0.5 * hi1 * md•1 + 2 * hi2 * lo2 + 0.5 * lo1 * lo2 - hi2 * md•1 - 0.5 * lo1 * md•1 - lo2 * md•1
        / like the above AM circuit,
          external switching control
                                          Flansed Time: 0.5003327s
```


GraphViz

The Modeling Language

Models are generated by programs

Freely containing both chemical reactions and control flow Can generate unbounded-size reaction networks

Rich data types

numbers, species, functions, networks, lists, flows (time-courses)
flows are composable functions of time used in rates, plotting, and observation

Modern abstractions

Functional: programs take data as parameters and produce data as results

Monadic: programs also produce effects (species, reactions, liquid handling)

Nominal: lexically scoped chemical species (species are not "strings")

Ex.: Predatorial

```
// Creates a stack of predator-prey
// relationships in Lotka-Volterra style,
                                        Laemika
// and returns the apex predator.
function Predatorial(number n) {
                                                  /'kimika/
 if n = 0 then
   define species prey @ 1 M
   prey -> 2 prey // prey reproduces
   report prey
   yield prey
 else
   define species predator @ 1/n M
   species prey = Predatorial(n-1)
   prey + predator ->{n} 2 predator
   predator -> Ø
   report predator
   yield predator
 end
species apexPredator = Predatorial(5)
equilibrate for 50
```

Protocol sublanguage and Microfluidics

Describing a Protocol

- · Samples (e.g. test tubes)
 - · Are characterized by a volume and a temperature
 - · Contain a specified set of species
 - Evolve according to reactions that operates on those species
 - Isolate species and reactions
- Protocol Operations (e.g. liquid handling)
 - Accept and produce samples
 - · Accepted samples are used up (they can only be operated-on once)

Mix and Split

```
// Example of Sample Manipulation
    //-----
                                                 Laemika/
/'kimika/
   species {c}
sample A {1µL, 20C}
   species a @ 10mM in A
amount c @ 1mM in A a + c -> a + a
    equilibrate A1 = A for 100
   sample B {1µL, 20C}
                                                                                             ۵
   species b @ 10mM in B
amount c @ 1mM in B
   b + c -> c + c
    equilibrate B1 = B for 100
    split C,D = A1
    dispose C
   mix E = D, B1
    a + b \rightarrow b + b
    equilibrate F = E for 1000
    dispose F
```

Ex: Phosphate-buffered saline (PBS)

```
species {NaCl#58.44, KCl#74.5513, NA2HP04#141.96, KH2P04#136.086}
report NaCl, KCl, NA2HPO4, KH2PO4
function Autoclave(sample PBS, number t) {
     // increase temperature, preserve volume:
     regulate hot = PBS to 121C
     // bake
     equilibrate hot for t
     // decrease temperature, preserve volume:
     regulate PBS = hot to 20C
  yield PBS
function MakePBS() {
  define
     sample PBS {800mL, 20C}
     amount NaCl @ 8g in PBS
     amount KCl @ 0.2g in PBS
     amount NA2HPO4 @ 1.44g in PBS
     amount KH2PO4 @ 0.24g in PBS
     sample topup {200mL, 20C}
     mix PBS = PBS, topup
  yield Autoclave(PBS, 20*60)
sample PBS = MakePBS()
```


HOME ABOUT SUBJECT CATEGORIES ARCHIVE SUBSCRIBE

Recipe

Phosphate-buffered saline (PBS)

Reagent	Amount	Final	Amount to add	Final	
	to add (for o	oncentration	(for 10×	concentration	
	$1 \times$	$(1\times)$	stock)	$(10\times)$	
	solution)				
NaCl	8 g	137 mm	80 g	1.37 м	
KCI	0.2 g	2.7 mm	2 g	27 mM	
Na ₂ HPO ₄	1.44 g	10 mm	14.4 g	100 mm	
KH ₂ PO ₄	0.24 g	1.8 mm	2.4 g	18 mm	
If necessary,	PBS may be s	upplemented	d with the follow	wing:	
CaCl ₂ ·2H ₂ O	0.133 g	1 mm	1.33 g	10 mm	
MgCl ₂ ·6H ₂ O	0.10 g	0.5 mm	1.0 g	5 mm	
PBS can be m	ade as a $1 \times$	solution or a	s a 10× stock.	To prepare 1	
L of either 1>	or 10× PBS,	dissolve the	reagents listed	d above in 800	
mL of H ₂ O. A	djust the pH	to 7.4 (or 7.	2, if required) v	vith HCl, and	
then add H ₂ C	to 1 L. Disp	ense the solu	ution into aliqu	ots and	
sterilize then	n by autoclav	ing for 20 m	in at 15 psi (1.0)5 kg/cm ²) or	
liquid cycle o	r by filter ste	rilization. Sto	ore PBS at room	temperature	

http://cshprotocols.cshlp.org/content/2006/1/pdb.rec8247

Digital Microfluidics

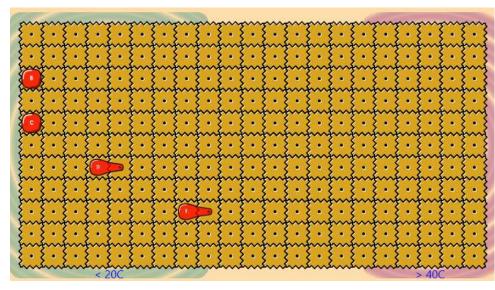
- A general, *programmable*, platform to execute the main liquid-handling operations
- To close the cycle, it can support many automated observation techniques on-board or off-board via peripheral pumps (sequencing, mass spec, ...) although these are all very hardware-dependent.

Digital Microfluidics

OpenDrop

https://www.youtube.com/watch?v=ncfZWqPm7-4

Speed test https://www.youtube.com/watch?v=pSls9L h3Q0

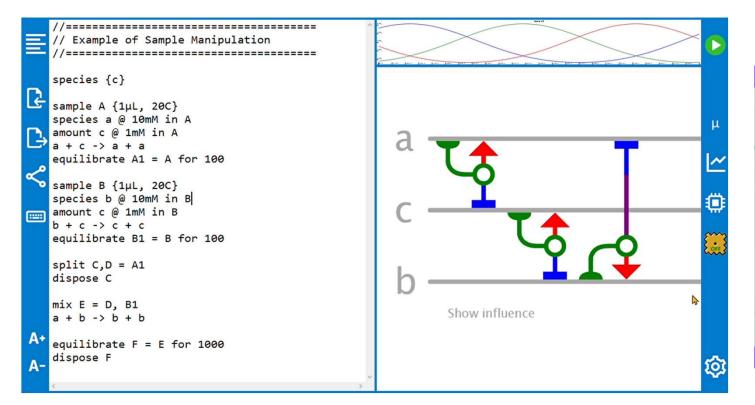

Digital Microfluidics Compiler

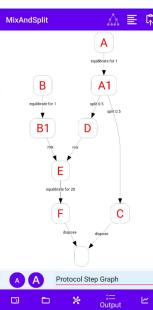
```
Sample E
   // Example of Sample Manipulation
   species {c}
   sample A {1µL, 20C}
   species a @ 10mM in A
amount c@1mM in A
a + c -> a + a
   equilibrate A1 = A for 100
   sample B {1µL, 20C}
   species b @ 10mM in B
amount c @ 1mM in B
   b + c \rightarrow c + c
   equilibrate B1 = B for 100
   split C,D = A1
   dispose C
   mix E = D, B1
   a + b -> b + b
   equilibrate F = E for 1000
   dispose F
                                                         Show influence
```

Digital Microfluidics Compiler

- Mix, split, equilibrate, dispose
- Automatic routing no geometrical information
- Hot/cold zones

```
sample A {3µL, 20C}
split B,C,D,E = A
mix F = E,C,B,D
dispose F
```




The model AND the protocol

Extracting the Model and the Protocol

The protocol

Conclusions

Experimental biological protocols with formal semantics

Alessandro Abate, Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Boyan Yordanov. CMSB 2018.

Kaemika app - Integrating protocols and chemical simulation Luca Cardelli, CMSB 2020.

Integrated modeling

Of chemical reaction networks and protocols How the Kaemika app supports it

Closed-loop modeling, experimentation and analysis

For complete lab automation
To "scale up" the scientific method

Thanks to:

Gold (parser)
OSLO (simulator)
C#/Xamarin (IDE)
App reviewers

No thanks to:

XAML (bug generator)

